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Abstract. Several alternative mathematical models for describing water flow in unsaturated
porous media are presented. These models are based on an equation for conservation
of mass of water, and a generalized linear law for water flux (Darcy’s law) containing
a term called the dynamic capillary pressure. The distinct form of each alternative model
is based on the specific form of expression used to describe the dynamic capillary pres-
sure. The conventional representation arises when this pressure is set equal to the equilib-
rium pressure given by the capillary pressure – saturation function for unsaturated porous
media, and this conventional approach leads to the Richards equation. Other models are
derived by representing the dynamic capillary pressure by a rheological relationship stat-
ing that the pressure is not given directly by the capillary pressure – saturation function.
Two forms of rheological relationship are considered in this manuscript, a very general
non-equilibrium relation, and a more specific relation expressed by a first-order kinetic
equation referred to as a relaxation relation. For the general non-equilibrium relation the
system of governing equations is called the general Non-Equilibrium Richards Equation
(NERE), and for the case of the relaxation relation the system is called the Relaxation
Non-Equilibrium Richards Equation (RNERE). Each of the alternative models was ana-
lyzed for flow characteristics under gravity-dominant conditions by using a traveling wave
transformation for the model equations, and more importantly the flow described by each
model was analyzed for linear stability. It is shown that when a flow field is perturbed
by infinitesimal disturbances, the RE is unconditionally stable, while both the NERE and
the RNERE are conditionally stable. The stability analysis for the NERE was limited to
disturbances in the very low frequency range because of the general form of the NERE
model. This analysis resulted in what we call a low-frequency criterion (LFC) for stability.
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This LFC is also shown to apply to the stability of the RE and the RNERE. The LFC
is applied to stability analysis of the RNERE model for conditions of initial saturation
less than residual.

1. Introduction

The instability of unsaturated flows during infiltration or redistribution of
water within soils and the vadose zone has been identified to be one form of
preferential flow through which fast transport of contaminants might reach
ground water resources (Glass et al., 1988; Nieber, 2001). Due to the rec-
ognition of the importance of this process, much effort has been expended
in the experimental and mathematical analyses of gravity-driven unstable
flows in unsaturated porous media with the idea that the development of
a complete theory and parameterization of unstable flows should provide
important components of soil hydrology and solute transport models.

The importance of gravity-driven unstable flows in unsaturated soils
was first recognized upon the publication of the first definitive study of
gravity-driven fingering in layered porous media in the paper by Hill and
Parlange (1972). Several earlier reports of gravity-driven fingering had been
reported by other investigators (e.g. Tabuchi, 1961; Smith, 1967) but those
studies were not definitive enough with relation to gravity-driven finger-
ing to capture the interest of soil physics and soil hydrology researchers.
The work of Hill and Parlange did indeed capture that interest and moti-
vated extensive experimental and theoretical work. A number of experimen-
tal studies of gravity-driven fingering followed, using two-dimensional slab
chambers filled with porous media packed either as two homogeneous lay-
ers of different texture (Diment and Watson, 1985; Glass et al., 1989a,c;
Baker and Hillel, 1990; Wang et al., 1998a, b), as completely homogeneous
systems (Selker et al., 1992a; Liu et al., 1994b; Bauters et al., 2000; Dein-
ert et al., 2002), or as heterogeneous systems (Sililo and Tellam, 2000). The
first definitive experimental study for fingering in field soils was given by
Starr et al. (1978).

Experimental data quantifying unstable flow have been derived using
visual observations of finger width and velocity, flow within individual fin-
gers, water pressure measurements within individual fingers (Selker et al.,
1992b), and water saturation distributions within fingers using either light
transmission (Glass et al., 1989a), gamma-ray attenuation (Bauters et al.,
2000), or neutron radiography (Deinert et al., 2002). One point that comes
out of all of these studies is that fingers are observed to occur when the
initial saturation is below the residual. For conditions where the initial sat-
uration is above residual, fingers of width less than the width of the exper-
imental chamber are not observed to occur, at least by the methods of
observation utilized to date.
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The first mathematical analysis of gravity-driven unstable flow was for-
mulated by Raats (1973) wherein he used the Green-Ampt model of infil-
tration, a sharp front model, as the basis for his analysis. The same basic
model was used in the linear stability analysis presented by Philip (1975a,
b) for gravity-driven flows. Philip’s analysis was similar to that presented by
Saffman and Taylor (1958) and Chuoke et al. (1959) for viscous fingering,
and showed that flows become unstable when the pressure gradient opposes
the flow. His spectral analysis provided expressions to calculate the criti-
cal perturbation wavelength and estimates of finger widths, but the derived
expressions contained properties related to Hele-Shaw cells and not to real
soils. Philip (1975a) explained that the Green-Ampt approximation has sig-
nificant limitations as the basis for the stability analysis of infiltrating flows
in real soils, and argued the need to perform analysis of flow instability
for the conditions where the wetting front is not sharp. As explained by
Philip (1975a) this would mean a stability analysis of the Richards equa-
tion, which he stated would prove to be difficult. This need was partially
met by the work of Parlange and Hill (1976) wherein the stability analysis
of the Green-Ampt type of model was extended to real soils by impos-
ing a diffuse structure to the wetting front. Their analysis provided expres-
sions for estimates of finger width as a function of imposed flow, saturated
hydraulic conductivity of the soil, initial moisture content, and sorptivity.
The analysis of Parlange and Hill has had a lasting impact as many for-
mulae for estimating finger size have been derived based on their original
work (Wang et al., 1989a; Glass et al., 1989b; Liu et al., 1994a; deRooij
and Cho, 1999).

The first stability analysis to the full Richards equation was presented
by Diment et al. (1982). In their analysis the basic equation of flow was
given by the Richards equation, and the pressure for the flow field was
perturbed. The form of their resulting perturbation equation was not trac-
table to analytical solution, so a numerical solution was sought instead
and results were reported by Diment and Watson (1983). For the lim-
ited cases considered they concluded that flows governed by the Richards
equation are stable to infinitesimal perturbations. But their results were
based on a numerical solution and therefore it was not possible to provide
a general result for all conditions wherein linear stability analysis would
apply.

Kapoor (1996) presented an analytical solution to the perturbed steady-
state Richards equation and concluded that steady-state flows governed by
the Richards equation are unconditionally stable for the exponential form
of the hydraulic conductivity – pressure function and conditionally sta-
ble for other forms such as the Brooks and Corey (1964) and van Ge-
nuchten (1980) forms of the hydraulic conductivity – pressure function.
Ursino (2000) performed a similar analysis to that of Kapoor except in
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her case time-dependent flows were considered. She showed that for the
exponential form of the hydraulic conductivity – pressure function, Rich-
ards’ equation is unconditionally stable, and therefore concluded that flow
instabilities must originate from some pore-scale process not included in
the conventional upscaling of the flow equation.

In the most recent published analyses the saturation flow field gov-
erned by the saturation form of the Richards equation has been sub-
jected to stability analysis by Du et al. (2001) and Egorov et al. (2002,
2003). The resulting perturbed flow equation was evaluated analytically
by Du et al. but due to it complex nature their analysis was incomplete,
leading them to the conclusion that the Richards equation is condition-
ally stable. One important feature of the work by Egorov et al. was that it
provided a complete analytical result for the perturbed flow equation and
the results led to the conclusion that the Richards equation is uncondition-
ally stable. Their result is consistent with the nonlinear stability analysis
given by Otto (1996, 1997), which concluded that the Richards equation
is unconditionally stable to all perturbations (infinitesimal and finite) in
homogeneous unsaturated porous media. Egorov et al. (2003) extended
the nonlinear analysis of Otto by showing that the Richards equation is
unconditionally stable to all perturbations even for heterogeneous porous
media.

These final results point to the fact that flow instabilities that occur in
gravity-driven flows must result from a flow process not included (explic-
itly or implicitly) in the Richards equation, and therefore we must con-
clude that the flow process is not described adequately by the conventional
Darcy law. In line with the conclusion of Ursino (2000), we conclude that
the process that causes flows to become unstable must arise from pore-scale
phenomena not included in the conventional governing equations. Going
further and following the work of Hassanizadeh and Gray (1993) we would
postulate that one possible pore-scale process that could cause instabilities
is the process described by dynamic capillary pressure – saturation rela-
tions. The results presented to date in Egorov et al. (2002, 2003) seem to
support this postulate.

This manuscript will provide an overview of the current state of under-
standing from a mathematical analyses standpoint, of gravity-driven flow
instabilities in unsaturated porous media. The presentation will review the
results presented to date by Egorov et al. (2002, 2003) with respect to the
unconditional stability of the Richards equation, and the conditional sta-
bility of flows described by models that include the dynamic capillary pres-
sure effect. In addition, we will present some new results that relate to the
extension of the models of Egorov et al. to the (dry) range of saturations
below residual saturation.
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2. Overview of Selected Governing Equations for Unsaturated Flow

The three-dimensional mass balance equation is written in non-dimensional
form as

∂s

∂t
−∇ · (K(s)∇p)− ∂K(s)

∂z
=0, (1)

where s is the effective saturation equal to (S −Sr) / (1−Sr), S is the water
saturation, Sr is the residual saturation, p is the water pressure, K(s) is the
unsaturated hydraulic conductivity, and z is the z-coordinate taken positive
upward opposite to the direction of gravity, and t is the time. This equation
is based on the substitution of Darcy’s law into the equation for conserva-
tion of mass. Different forms of the mass balance equation can be obtained
depending on the form of the pressure function p. The forms available to
define the pressure function are numerous. The first one is based on a con-
ventional formulation and thereby leads to the Richards Equation (RE)
and is given by

p =P(s). (2)

This equation describes the conventional equilibrium relation between
water pressure and water saturation, and can be non-hysteretic or hyster-
etic. The substitution of p from relation (2) into equation (1) yields the
conventional RE given by

∂s

∂t
−∇ · (K(s)∇P(s))− ∂K(s)

∂z
=0 (3)

or in saturation form the equation is

∂s

∂t
−∇ · (D(s)∇s)− ∂K(s)

∂z
=0, (4)

where D(s)=K(s)P ′(s). Substitution of relation (2) into Darcy’s law (q =
−K(s)∇p −K(s)ez) gives

q =−K(s)∇P(s)−K(s)ez, (5)

where ez is the unit vector in the vertical.
A more general form of the pressure function is given by the relation

F

(
s,p,

∂s

∂t
,
∂p

∂t
, . . .

)
=0. (6)

This equation indicates a non-equilibrium relation between water pressure
and saturation. The dependence of the pressure on the saturation and tem-
poral derivatives of the saturation and the pressure are indicated by the
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terms included in the argument of the function. The idea for non-equilib-
rium relations for water pressure and saturation is based on experimental
evidence presented in various studies (Kirkham and Feng, 1949; Nielsen
et al., 1962; Rawlins and Gardner, 1963; Topp et al., 1967; Smiles et al.,
1971; Wildenschild et al., 2001) and theoretical considerations (Hassan-
izadeh and Gray, 1993; Hassanizadeh et al., 2002; Dahle et al., 2002).
Since this function has a generalized form it is not possible to introduce
it directly into the mass balance equation and thereby provide a distinct
equation. But an analysis of Equation (1) coupled with relation (6) is pos-
sible as will be shown in Section 3. The combination of equations (1) and
(6) will hereafter be referred to as the NERE model.

A specific form of relation (6) that we will spend a significant part of
the next sections describing is given by the relaxation equation

τ(s,p)
∂s

∂t
=p −P(s), (7)

where τ(s,p) is a relaxation parameter in the kinetic rheological relation
for non-equilibrium capillary pressure – saturation relations. Substitution
of function p from relation (7) into Equation (1) leads to

∂s

∂t
−∇ · (K(s)∇P(s))−∇ ·

(
K(s)∇

(
τ(s,p)

∂s

∂t

))
− ∂K(s)

∂z
=0 (8)

and into Darcy’s law we get

q =−K(s)∇P(s)−K(s)∇
(

τ(s,p)
∂s

∂t

)
−K(s)ez. (9)

The equations given by equation (1) and relation (7) or alternatively Equa-
tion (8) will hereafter be referred to as the RNERE model. In relation (9)
we have the usual gradient of the equilibrium pressure term, but also the
gradient of the relaxation term which contains the temporal rate of change
of saturation.

For most of the analyses to follow we consider conditions where the sat-
uration falls in the range 0 < s < 1, however, in Section 4.2.2 we consider
the case where the initial saturation is less than residual.

3. Review of Stability Analyses of the RE

Linear stability analyses of the RE have been presented by Diment and
Watson (1983), Ursino (2000), Kapoor (1996), Du et al. (2001) and Egorov
et al. (2002, 2003). Diment and Watson, Ursino, and Kapoor all started
with the pressure-based form of the RE, while Du et al. and Egorov et al.
utilized the saturation-based form of the RE.
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Starting with the saturation-based form of the RE the traveling wave
equation is derived using the transformation variables

s = s (ξ) , ξ = z+V t (10)

subject to the boundary conditions

s(−∞)= s−, s(+∞)= s+, 0<s− <s+ <1, (11)

where the velocity V of the traveling wave is given by

V = K (s−)−K (s+)

s− − s+
. (12)

Applying these variables to equation (4) yields the traveling wave form of
the RE,

V
ds

dξ
− d

dξ

(
D(s)

ds

dξ

)
− dK(s)

dξ
=0. (13)

The solution for equation (13) subject to the boundary conditions at infin-
ity (ξ =+∞) is given as (Philip, 1957)

ξ(s)− ξ∗ =
∫ s

s∗

D(s)ds

v(s − s+)−K(s)+K(s+)
, (14)

where ξ∗ is the coordinate location of the arbitrarily selected saturation s∗
(s− <s∗ <s+). The inverse of the function ξ(s) is called the basic solution
and will be designated as s0(ξ). A typical plot of this solution is presented
in Figure 1. By the nature of the solution and the included functions (K(s)

and P(s)) the saturation decreases monotonically from s+ at +∞ to s− at
−∞.

The stability analysis is based on a small perturbation applied to the
basic solution so (ξ). The perturbed saturation field is represented as

s(x, y, z, t)= so (ξ)+ εeiωxx+iωyy+kt s1 (ξ)+O
(
ε2) , (15)

where the ωx and the ωy are characteristic wave numbers in the x and y

directions, respectively, the k is the amplification factor (or growth factor),
the function s1(ξ) describes the variation of the bounded perturbation in
the ξ coordinate and vanishes at ±∞, and ε scales the magnitude of the
perturbation.

The perturbed solution is obtained by substituting expression (15) into
equation (4) and dropping terms of order ε2. Accounting for the equa-
tion for the basic solution and collecting like terms we arrive at a locally
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Figure 1. A typical plot of saturation s versus dimensionless variable ξ as a result
of the solution of the traveling wave form of the RE. This solution comprises the
basic solution so.

linearized perturbation equation in the form of a spectral problem for
determining nontrivial s1 and k =k(ω) for arbitrary ω, that is

− d2

dξ 2
(D(so)s1)+ d

dξ

((
V −K ′(so)

)
s1

)+ω2D(so)s1 =−ks1, −∞<ξ <∞.

(16)

An equation of similar form to equation (16) was also derived by Du et al.
(2001).

Now the problem is the analysis of the spectrum of the problem (16).
If the equation admits a solution (s1, k) with k > 0 then we have instabil-
ity of the RE. If all solutions have k<0 then the flow governed by the RE
is stable. Analytical investigation of the spectral problem is difficult in the
form of equation (16) because the equation is not self-adjoint. To make the
analytical study tractable we perform a transformation using new variables
ζ and θ to replace ξ and s1 respectively,

ζ =
∫

dξ√
D (so)

, θ = D1/4 (so)√
s ′

o

s1, (17)

which leads to

−d2
θ

dζ 2
+ (

ω2D +F
)
θ =−kθ, −∞<ζ <∞, (18)
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where

F = 1
B

d2
B

dζ 2
, B =D1/4√s

′
o.

Equation (18) is self-adjoint and therefore has been made tractable to the-
oretical analysis.

In mathematical physics equation (18) is known as the Schrödinger
equation, and for different forms of the potential (ω2D + F) the spectral
problem for the Schrödinger equation has been studied (Carmona and Lac-
roix, 1999), and therefore known techniques can be used to investigate the
problem presented by equation (18). Such an analysis was performed in
Egorov et al. (2003) in which it was shown that the spectrum of the prob-
lem is negative (i.e., k < 0) for all non-zero frequencies ω of the perturba-
tion.

So we can now state that the RE is unconditionally stable to infinites-
imal perturbation. But it is legitimate to ask whether the occurrence of
finite perturbations to the basic flow would be stable. This query has been
addressed by Otto (1996, 1997) and by Egorov et al. (2003). It was shown
by Otto that the type of equation given by the RE is unconditionally stable
for perturbations of finite magnitude in the case of homogeneous porous
media. Otto’s work was extended by Egorov et al. to show that the same
conclusion is found for the case of heterogeneous media. While the lin-
ear stability analysis outlined in the foregoing description points toward
unconditionally stability of the RE it does not prove the stability of the
RE for all conditions. But the nonlinear stability analyses of Otto and Ego-
rov et al. provides strong proof that the RE is unconditionally stable for
all conditions. This also means that upscaling of the RE over a heteroge-
neous domain will lead to a governing equation that possesses the property
of unconditional stability.

4. Stability Analyses of Selected Nonequilibrium Models

In this section we will consider the two types of nonequilibrium models
that were outlined in Section 2, that is the NERE and the RNERE. The
NERE will be described under the heading of the general nonequilibrium
model, while the RNERE will be described under the heading of the relax-
ation nonequilibrium model.

4.1. general nonequilibrium model

The general nonequilibrium model was presented in Section 2 by the cou-
pling of equation (1) and relation (6) and referred to as the NERE. Due to
the non-specific form of relation (6) it is not possible to derive an explicit
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equation for analysis, but as shown by Egorov et al. (2003) it is possible to
derive a useful stability criterion for the NERE.

A linear stability analysis is performed on the NERE using the same
procedure we used for the stability analysis of the RE. First we define a
basic solution based on the traveling wave form of the NERE. The travel-
ing wave form of equation (1) for that model is independent of the form
of the rheological relation. That traveling wave equation is given by

V
ds

dξ
− d

dξ

(
K(s)

dp

dξ

)
− dK(s)

dξ
=0. (19)

After integrating once and applying the boundary conditions we have the
following result,

dp

dξ
= V (s − s+)+K(s+)−K(s)

K(s)
. (20)

The transformation to the traveling wave variable for relation (6) gives

F

(
s,p,V

ds

dξ
,V

dp

dξ
, . . .

)
=0. (21)

Let us suppose that the solution to the traveling wave equation (20) and
relation (21) exists and are represented by s0(ξ) and p0(ξ), respectively. The
exact form of these basic solutions will depend on the form of the rheolog-
ical relation (6), but it is not necessary to specify the form of that relation
to perform the following stability analysis.

The next step in the linear stability analysis is to superimpose three-
dimensional perturbations in saturation and pressure onto the basic solu-
tion in the form

s(x, y, z, t)= so (ξ)+ εeiωxx+iωyy+kt s1 (ξ)+O
(
ε2) , (22)

p(x, y, z, t)=po (ξ)+ εeiωxx+iωyy+ktp1 (ξ)+O
(
ε2) . (23)

These perturbation expressions are substituted into equation (1) and rela-
tion (6), and terms of order ε2 are dropped to yield a system of locally
linearized perturbation equations in the form of a spectral problem for
determining nontrivial p1 and s1, corresponding to spectral parameter k for
arbitrary frequencies ω. This spectral problem is expressed by

dA

dξ
+ω2K(s0)p1 =−ks1, (24)

�

(
s1, p1,

ds1

dξ
,

dp1

dξ
. . . ; s0, p0,

ds0

dξ
,

dp0

dξ
, . . . ; k

)
=0, (25)



DYNAMIC CAPILLARY PRESSURE MECHANISM 157

where A is the flux perturbation given by

A=−K(s0)
dp1

dξ
−K ′(s0)

(
1+ dp0

dξ

)
s1 +V s1. (26)

Integration of equation (24) with the boundary condition such that A van-
ishes as ξ →±∞, leads to the integrals

ω2
∫ +∞

−∞
K(s0)p1dξ =−k

∫ +∞

−∞
s1dξ. (27)

It is not possible to evaluate the signs of the integrals in equation (27)
and thereby be able to find the sign of k = k(ω) without knowing the spe-
cific forms for s0, s1 and p1. However, it is possible to perform an asymp-
totic analysis to derive an asymptotic solution for the eigenvalue k0 at low
frequency(ω � 1). This analysis begins by establishing the fact that the ei-
genfunction for s1 and p1 are equal to ds0/dξ and dp0/dξ when ω = 0 as
shown in Egorov et al. (2003). At low frequency the eigenvalue k0 and the
eigenfunctions s1 and p1 can be expanded in powers of ω2 as

k0 =0+bω2 +· · · ,

s1 =ds0/dξ + s∗ω2 +· · · ,

p1 =dp0/dξ +p∗ω2 +· · ·
Substituting these expressions into equation (27) and dropping terms of
order ω4 leads to

b=− C

s+ − s−
with

C =
∫ +∞

−∞
K(s0)

dp0

dξ
dξ. (28)

Therefore we have

k0 =− C

s+ − s−
ω2 +O(ω4). (29)

Since ω2 and (s+ − s−) are inherently positive, the condition given by
equation (29) means that flows will be unstable (k0 >0) when C <0. Exam-
ining the expression for C in equation (28), the value of C will be nega-
tive when the pressure field is sufficiently non-monotonic. This result about
the pressure gradient being opposed to the flow for gravity-driven unstable
flows was also found by Raats (1973), Philip (1975a) and Parlange and Hill
(1976).

The low frequency criterion established here will be used in later sec-
tions to evaluate the stability of the RNERE models presented in those
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sections. But here we should end with a note about the use of the low fre-
quency criterion as a tool to evaluate the stability of the RE model. It was
established in Section 3 that for infiltrating flows the pressure and satura-
tion profiles in the RE model are monotonic, meaning that the pressure
gradient dp0/dξ is positive for all cases of the RE model. Using this result
in equation (28) leads to C >0, and from expression (29) the value of k0 <0
for all small ω, meaning that infiltrating flows governed by the RE will be
stable.

4.2. relaxation nonequilbrium model

The relaxation non-equilibrium model is a special case of the general-
ized nonequilibrium model where the dynamic pressure is given by a first
order kinetic rheological relation as in relation (7). For this model we
have examined two conditions, one in which the initial saturation is above
the residual, and the other where the initial saturation is less than the
residual. These distinct cases are both important because most models of
unsaturated flow have involved saturation conditions above residual, while
in many realistic field conditions, and also in many laboratory experi-
ment conditions the saturations within the flow domain can be below
residual. Each of these cases will be examined in the following subsec-
tions.

4.2.1. RNERE Model for Initial Moisture Greater than Residual
The RNERE model is given by the combination of equations (1) and rela-
tion (7). The traveling wave form of those equations are given by the cou-
pled equations

ds

dξ
= p −P(s)

V τ (p, s)
, (30)

dp

dξ
= V (s − s+)+K(s+)−K(s)

K(s)
(31)

subject to the initial conditions s(−∞)= s− and p(−∞)=P(s−). Equation
(31) was obtained after once integrating with respect to ξ and applying the
boundary condition s = s+ at ξ =∞.

We now investigate the situation where τ is factorized into a constant
τo, a function of pressure τp(p) and a function of saturation τS(s). This
factorization is expressed by

τ(s,p)= τ0τp(p)τS(s). (32)
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A number of functions could be used to express the pressure and the sat-
uration dependencies. We have used the following functions:

τS(s)= dP(s)

ds
, (33)

τS(s)= sγ (1− s)δ , (34)

τp(p)= (p∗ −p)η, η>0. (35)

The other parameters that need to be specified are those defining the
capillary pressure – saturation relation, and the hydraulic conductivity –
saturation relation. The more common types of forms used in modeling
unsaturated flows are those referred to as the van Genuchten relations and
the Brooks–Corey relations. Both of these types of relations were used in
the present study. The van Genuchten relations (van Genuchten, 1980) are
given by

P(s)=−(s−1/nm −1)1/n, (36)

K(s)=√
s
[
1− (

1− s1/m
)m

]2
, (37)

where n and m are porous media dependent parameters. The relation for
the hydraulic conductivity is for the special case of a Mualem–Burdine type
of pore-scale model where m=1−1/n.

The relations for P(s) and K(s) for the Brooks–Corey formulation
(Brooks and Corey, 1964) are given by

P(s)=−s−β, 0<β <1, (38)

K(s)= sα, α >2. (39)

For these models hysteresis in the P(s) function was represented by the
Mualem (1974) independent domain model.

4.2.1.1. Basic Solution. In this section we will present numerical solutions
of equations (30) and (31) with the associated initial condition. A simi-
lar analysis was presented by Cuesta et al. (2000) wherein they analyzed
the existence, uniqueness and monotonicity of the solution to Equation (8)
instead of the system of equations (1) and (7). In the following we will
show results from our own calculations about monotonicity of the solu-
tion of this system of equations, and where it is pertinent we will relate our
results to those of Cuesta et al.

Solutions (that is basic solutions) to Equations (30) and (31) were per-
formed numerically using the relaxation function expressed by relation (32)
with relations (33) and (35) in particular. A sample set of solutions are
illustrated in Figure 2, where all parameters are kept constant except for
the value of τ0. The invariant parameters are: s+ = 0.6, s− = 0.1, n = 10,
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α=2.5, and η=0. The value set for η makes the relaxation coefficient inde-
pendent of pressure for these simulations. The results for six values of τ0

are presented in the plot. It is seen that as the value of τ0 increases the
solution becomes more non-monotonic. For the case with τ0 = 0 the solu-
tion is the same as the solution to the RE, and the profile is seen to be
monotonic.

The magnitude of the relaxation coefficient necessary to produce non-
monotonicity in the basic solution is estimated from the parameter τF (s+),
given by,

τF = τF (s+)=
(
s+P ′ (s+)

)2

4 (s+K ′ (s+)−K (s+))
. (40)

Equation (40) is derived from analysis of the traveling wave equations (30)
and (31) with the underlying assumption that s+ � s−. For the parameters
used in producing Figure 2, equation (40) gives τF (s+)= 0.036. Therefore,
when τ(s+)� 0.036 the traveling wave solution is non-monotonic. For the
cases shown in Figure 2, this occurs for the values of τ0 exceeding about
0.08.

It is observed that the tails of the non-monotonic profiles shown in Fig-
ure 2 are oscillatory. This feature can be understood upon viewing the
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Figure 2. Plots of saturation versus traveling wave variable for various values of τ0.
The curve labels 1 to 6 correspond to the following values of τ0 =0, 0.07, 0.1, 0.2,
0.5 and 1.0. The relaxation function τ (s,p) is given by relation (32) in conjunction
with (33) and (35). The critical value of τF for non-monotonicity is 0.036. The first
two curves are monotonic and τ (s+, p+)>τF , while curves 3–6 are non-monotonic
and τ (s+, p+)>τF . The larger the value of τ , the more non-monotonic the satura-
tion profile.
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phase plane shown in Figure 3(a), which is derived from the same solu-
tion for τ0 =0.5 shown in Figure 2. There we see that the trace starting at
s− ends at a focus point around s+. In contrast, as shown in Figure 3(b)
for the monotonic solution (derived with τ0 = 0.07) the end point at s+ is
nodal and therefore the tail is non-oscillatory. Although the result is not
shown here, we found the tail of a non-monotonic solution to be non-oscil-
latory (ends at a nodal point at s+) when the equilibrium capillary pressure
– saturation relation P(s) is hysteretic.

For the model just presented we used relation (33) which yields a satu-
ration dependence to the relaxation coefficient similar in behavior to that
derived by Panfilov (1998) in his analysis for upscaling dynamic capillary
pressure for two-phase flows. This relation shows (see Figure 4) that the
saturation dependent part of the coefficient is unbounded at the extreme
ends of the effective saturation range. In using this model we found that
as s− →0, the pressure at the wetting front becomes unbounded and phys-
ically unrealistic. A sample result of this is shown in Figure 5(a). The
parameters used to derive this were the same as those used to derive Fig-
ure 2, with τ0 = 0.5. It is observed that as s− progressively decreases, the
water pressure at the wetting front increases to the point where it becomes
positive, which is a physically unrealistic result. Even further reduction in
s− leads to pressure at the front approaching infinity.

A solution we discovered to resolve this problem of unbounded pressure
was to apply a non-unity pressure factorization into the relaxation coeffi-
cient, such as the factorization given by relation (35). With this factoriza-
tion, as s− →0 the pressure at the wetting front is limited to p∗. A sample
result of this solution is shown in Figure 5(b), wherein the parameters are

Figure 3. A typical phase plane plot for the basic solution to the RNERE equa-
tions for two cases of τ : (a). Where the τ is sufficiently large (τ � τF ) to lead to a
non-monotonic saturation profile, and (b). where the τ is small enough (τ � τF )to
lead to a monotonic saturation profile.
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Figure 4. Alternative forms of the saturation component of the relaxation coeffi-
cient. These are based on Equations (33) (solid line) and (34) (dash line).

Figure 5. The effect of a pressure limit function used in the relaxation coefficient
function. As the initial saturation decreases, the pressure at the front increases. In
(a) the pressure limitation is not imposed and as s− →0, the pressure at the front
increases without bound. In (b) the limitation on pressure is imposed and is in the
form of a water entry pressure p∗ and therefore the pressure at the front is bounded
from above.

all the same as for the solution shown in Figure 5a, but in this case the
pressure factorization is applied. For this case the parameter values in the
pressure function were set to η=1.0 and p∗ =−0.1.

An approach different from this was presented by Cuesta et al. (2000).
In their analysis the hydraulic functions were taken from the Brooks–Co-
rey functions. For the relaxation coefficient they used the formula τ = τ0s

γ

(same as relation (34) but with δ=0). A qualitative description of this func-
tion is illustrated in Figure 4 with γ >0, where it is seen that the relaxation
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Figure 6. Phase plane diagrams showing the effect of porous media hydraulic and
non-equilibrium characteristics on the shape of the phase plane trace. The divid-
ing point between the two behaviors is the parameter γ = (α −2−2β). For (a) the
γ > (α −2−2β), and the solution to the traveling wave equation is bounded from
above. For (b) the γ <(α −2−2β) and the traveling wave solution is not bounded,
and therefore the solution does not exist.

coefficient approaches zero as the saturation approaches zero while it is
finite and non-zero at full saturation.

Cuesta et al. (2000) stated that the solution to the traveling wave form
of the RNERE exists and is unique for all intial conditions when s− > 0.
However, for the condition where s− →0, they found the same result as we
did where the pressure at the front became unbounded. Rather than use a
pressure factorization as we did, they instead defined the range of parame-
ters that would allow the solution pressure to be bounded as s− →0. Their
analysis showed that for the solution to be bounded the parameter γ needs
to be constrained by the inequality γ >(α −2−2β).

A qualitative result showing the effect of setting γ according to this cri-
terion is illustrated in Figure 6 where the phase plane for saturation versus.
pressure is plotted. Shown on each plot are the equilibrium pressure curve
and the trace set by the evolution of saturation in the traveling wave solu-
tion. For the case shown in Figure 6(a) the value of γ >(α −2−2β). For
this case the trace makes a tangential departure from the equilibrium curve,
and at the end the trace reaches a pressure that is bounded from above. In
contrast, for the case shown in Figure 6(b), the value of γ < (α −2−2β),
and for this situation the trace makes a vertical departure from the phase
plane, effectively causing the trace to reach pressures that are not bounded
from above.

4.2.1.2. Stability Analysis for the RNERE. The linear stability analysis for
the RNERE is performed similarly to that for the NERE (see equations
(24) and (25)). We need only to specify the equation due to the relaxation
law. The resulting perturbed equations are given by
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Figure 7. Plots of the critical eigenvalue as a function of wave number of distur-
bance for various values of τ0. The curve labels 1–6 correspond to the following
values of τ0 =0, 0.07, 0.1, 0.2, 0.5 and 1.0.

dA

dξ
+ω2K(s0)p1 =−ks1, (41)

V τ0
ds1

dξ
+

(
P ′(s0)+V

∂τ(s0, p0)

∂s

ds0

dξ

)
s1

+
(

V
∂τ(s0, p0)

∂p

ds0

dξ
−1

)
p1 =−kτ0s1 (42)

with the same definition for A given by equation (26).
Equations (41) and (42) are in the form of a spectral problem for which

we are interested in the sign of the spectrum especially for the sign of the
critical eigenvalue k0 if it exists. The equations are not readily amenable to
analytical solution, so a numerical solution for the eigenvalue problem will
be presented.

Results of the numerical solution of the eigenvalue problem given by
equations (41) and (42) for the critical eigenvalue k0(ω) are presented in
Figure 7 for various values of the parameter τ0. The other parameters
needed for the solution are the same as those used in developing Figure 2.
The result for τ0 = 0 (curve 1) is essentially the same result that would be
obtained for solving the RE eigenvalue problem given by equation (18) for
equivalent sets of porous media parameters. From Figure 7 it is observed
that the critical eigenvalue for the solution with τ0 = 0 (RE solution) is
negative for all perturbation frequencies, and therefore the RE is uncondi-
tionally stable, and this agrees with the conclusion derived in Section 3 by
analytical means. The critical eigenvalue is also negative for all frequencies
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for τ0 = 0.07. However, for τ0 > 0.07 the saturation profile is sufficiently
non-monotonic (see curves 3–6 in Figure 2) for the critical eigenvalues to
be positive over a range of frequencies. For this set of parameters then
we can establish the critical value of τ0 for instability to be slightly less
than 0.1. Also, we can say that somewhere within the range of 0.08<τ0 <

0.10 the critical eigenvalues will be negative although the saturation profiles
within that range are somewhat non-monotonic. These results on the con-
ditional stability of the RNERE have shown that the advancing flow can
be unstable if the parameters fall within a specified range.

The low frequency criterion derived in Section 4.1 also applies to the
results obtained here for the RNERE model. Equation (29) indicates that if
the value of C is negative then the flow will be unstable. As shown earlier
in this section, the pressure profiles generated by the basic solution of the
RNERE model can be non-monotonic if the value of the relaxation coeffi-
cient is large enough. However, it was just shown that non-monotonicity
by itself is not a sufficient condition to guarantee instability. Instead, the
degree of non-monotonicity has to be large enough to lead to instability.

As a reminder we should note that the results presented up to this point
have all been for the condition where the initial saturation is at or above
the residual saturation. Therefore, one might argue that our results are con-
tradictory to experimental evidence that overwhelmingly has shown that
flows generally become unstable where the initial saturation is below the
residual. This argument then motivates us to investigate the case where
Sinit <Sr. This is done in the next section.

4.2.2. RNERE Model for Initial Moisture Less than Residual
Most models of unsaturated flow are concerned with flows that occur at
saturations above the residual. For the case where the initial saturation is
less than the residual, an extended model is required. We will now present
analyses for an extended model for unsaturated flow. Both the basic solu-
tion and a stability analysis for the basic solution will be presented.

4.2.2.1 Basic Solution for the Extended Model. The governing equations are
changed slightly using saturation S as the primary variable, as opposed to
effective saturation s as before. The traveling wave form of the RNERE
therefore becomes (analogous to equations (30) and (31))

dS

dξ
= p −P(S)

V τ (S)
, (43)

dp

dξ
= V (S −S+)+K(S+)−K(S)

K(S)
. (44)

The usual pressure-saturation and conductivity-saturation relations apply
for the saturation range from residual to full saturation. To apply equations
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(43) and (44) over the full range of saturation from S =0 to S =1 we need
an extended model for pressure-saturation and conductivity-saturation. For
this we use the approach of Rossi and Nimmo (1994) who extended the
modified Brooks–Corey model for the range 0 � S � Sj , except that we
use the conventional Brooks–Corey function for the range Sj �S � 1. The
parameter Sj is the value of saturation joining the two ranges of satura-
tion. The pressure-saturation model now becomes

P(S)=−p0 exp(−aS), 0�S �Sj ,

P (S)=−
(

S −Sr

1−Sr

)−β

, Sj �S �1. (45)

The conductivity-saturation relation is given by

K(S)=
√

S [I (S)/I (1)]2 , (46)

where

I (S)=1− 1
ap0

eaS, 0<S <Sj , (47)

I (S)=1− 1
ap0

eaSj + 1−Sr

β+1

[(
Sj −Sr

1−Sr

)β+1

−
(

S−Sr

1−Sr

)β+1
]

, Sj <S �1.

(48)

The computed parameter a and Sj provide first-order continuity for these
functions. The Sj is set at a saturation slightly above Sr .

For the relaxation coefficient we used relation (34) with δ = 0. Asymp-
totic analysis showed that for bounded solutions as Sinit → 0 we need
γ >0.5.

Parameter values for the model were chosen to fit the experimental data
of Bauters et al. (2000), who performed experiments to evaluate the effect
of initial saturation on flow stability. They examined initial water contents
ranging from air-dry conditions to residual water content. For the analy-
sis to follow we examined a subset of their experiments, using initial water
contents θinit :0.001, 0.01, 0.02, 0.03, 0.04 and 0.047. The residual water
content for their porous media was 0.047 and saturated water content was
0.348. Parameter values obtained from the published moisture retention
data were Sr = 0.135 and β = 0.18, while for the conductivity function we
used p0 = 105 m and a = 1.5. We also calibrated the relaxation coefficient
relation using the published water content and pressure profiles for the
experimental run for θinit =0.001, and obtained τ0 =1.5 and γ =1.5.

The saturation profiles resulting from the solution to equations (43) and
(44) with the specified parameters are shown in Figure 8 for the various
values of Sinit corresponding to the various initial water contents. The pro-
files for the very dry initial conditions are clearly non-monotonic, while
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Figure 8. Water content as a function of dimensional time at any particular point
within the flow domain. The cases θinit = 0.01 and 0.03 represented in Table I are
not shown.

the profiles for the higher initial saturations are essentially monotonic. The
characteristics of these profiles with respect to flow stability will be dis-
cussed in the next section.

4.2.2.2. Stability Analysis for the Extended Model. The analysis of flow sta-
bility for the extended RNERE model follows the same procedures as for
the RNERE model outlined in Section 4.2.1. The resulting spectral prob-
lem is essentially the same as that shown by equations (41) and (42). The
main difference between the current model and the previous model is in the
parameters of the system due to the extension to dry conditions. As before,
the complexity of the resulting perturbation equation makes it necessary to
solve the eigenvalue problem by numerical means.

When we attempted the numerical evaluation of the spectral problem
for the extended RNERE we found the numerical procedures used previ-
ously to be inadequate to get accurate results. The reason for the numeri-
cal difficulty is the extremely steep wetting front that develops for the basic
solution in the case of the dry initial condition (see Figure 8). Therefore,
to derive some useful results the direct evaluation of the spectral problem
was abandoned for the time being and the low-frequency criterion analysis
derived by Egorov et al. (2003) and outlined in Section 4.1 was applied.
Revisiting the direct spectral problem will have to await further investiga-
tion into more accurate means to solve the steep front problem.

The low-frequency criterion for flow stability was given by equations
(28) and (29). These equations state that when the pressure profile is suffi-
ciently non-monotonic the value of C will be negative, and this will then
lead to a positive value of k0, indicating the flow will be unstable. So the
determination of the stability of flows generated from dry initial conditions
is to simply evaluate expression (28) with the K(s0)dp0/dξ derived from the
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Table I. Finger widths as a function of initial water content observed
in the experiments of Bauters et al. (2000), and corresponding values
of C evaluated by Equation (28)

θinit 0.001 0.01 0.02 0.03 0.04 0.047

Finger (cm) 2.5 1.25 3.0 7.5 11.0 30.0
C −2.46 −2.85 −0.96 −0.087 −0.093 0.009

traveling wave solution for a specific set of porous media parameters, and
if the value of C is negative to then conclude that the flow will be unstable.

The value of C evaluated with equation (28) for the various initial water
contents is presented in Table I. Finger widths reported by Bauters et al.
(2000) for the corresponding cases are also listed. The experimental cham-
ber had a width of 30 cm. It is observed from the table that as the initial
water content approached the residual of 0.047 the finger width increased
to the size of the experimental chamber.

From the values presented in the table it appears that the only case of
stable flow (C > 0) occurs for θinit = 0.047. All the other cases have nega-
tive values of C, indicating instability of flow. The finger widths observed
by Bauters et al. (2000) are in agreement with this result. The largest fin-
ger width was observed for θinit = 0.047, with the finger width being at
least equal to the width of the chamber. The next largest finger width was
11.0 cm for the case with θinit = 0.04. While the plot in Figure 8 for θinit =
0.04 does not appear to be non-monotonic, it was sufficiently non-mono-
tonic so that the value of C was negative in the evaluation of equation
(28). For the other two cases shown in Figure 8, θinit =0.001 and θinit =0.02,
the saturation profiles are clearly non-monotonic, and this is manifested in
the values of C presented in Table I.

5. Summary and Conclusion

We have presented several alternative forms of the equations for flow in
unsaturated porous media. All of the various forms contain two coupled
equations, the mass balance equation derived from a combination of con-
servation of mass and a linear flux law, and a relationship for the pres-
sure that appears in the mass balance equation. The differences between
the different forms of equations are contained completely in the definition
of the pressure function. For the conventional equation for unsaturated
flow, given by the RE, the pressure function is given by the equilibrium
capillary pressure – saturation relationship. A more general equation sys-
tem is derived using a generalized non-equilibrium relationship of the
pressure function, and this is called the NERE. A specific form of the
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non-equilibrium relationship is given by a relaxation function expressed by
a first-order rate process. The equation system using this relaxation func-
tion is referred to as the RNERE.

The traveling wave solution was studied for each of these models and
stability analysis of these traveling wave solutions was performed. The
characteristics of the traveling wave solutions for the RE and the RNE-
RE were analyzed in detail, and expressed in terms of the monotonicity
or non-monotonicity of the traveling wave saturation and pressure profiles.
These solutions were derived for the standard case where the initial satu-
ration is above residual saturation. The RNERE was also extended to the
case where the initial saturation is less than the residual, since this corre-
sponds better with conventional laboratory experiments on unstable flows.

For the linear stability analysis the solution to the system of equations
in the traveling wave variable yielded a basic solution that was then per-
turbed by infinitesimal fluctuations. Stability of the perturbed flow was
then analyzed by the method of spectral analysis. The stability of the
NERE was analyzed at low-frequency only because of the general form of
the non-equilibrium pressure function, and the resulting criterion is called
the LFC. The stability analysis for the RNERE for initially dry conditions
was also limited to the LFC because of the numerical difficulty to accu-
rately solve the perturbation equation with extremely sharp fronts.

From the analyses presented here we can conclude the following.

(1) The RE is unconditionally stable to any perturbation, whether infinites-
imal or finite in magnitude, in homogeneous or heterogeneous porous
media. The traveling wave saturation and pressure profiles for the RE
are monotonic for standard type boundary conditions.

(2) The analysis of the stability of the NERE model using the LFC shows
that infiltrating flows governed by the NERE can become unstable for
conditions where the flow profile is sufficiently non-monotonic.

(3) The saturation and pressure profiles for the RNERE model were found
to be non-monotonic for a sufficient large value of the relaxation coeffi-
cient parameter τ0. The larger this parameter the larger is the degree of
non-monotonicity of the profiles. Assessments of stability over a wide
range of perturbation frequencies were completed showing that flows are
stable even for slight non-monotonicity, but transition to unstable as the
degree of non-monotonicity increases.

(4) For initially dry conditions, the LFC assessment of the RNERE indi-
cated unstable flow for initial conditions from absolutely dry up to near
residual saturation. With initial saturation equal to the residual, the
LFC indicated that the flow may be stable. These stability assessments
were in good agreement with the stability experiments of Bauters et al.
(2000).
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